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In this computer lab you will experiment with simulated evolution and phylo-
genetic reconstruction: the reconstruction of the evolutionary history of species,
simulated genes, or — in the end — language and music. We will work on this
computer lab during several lab sessions throughout the course, and indicate
which sections you are expected to finish in every lab session. If you don’t man-
age to finish those sections, you can work on them at home, and ask questions
on Canvas/by e-mail or during the next lab.

Last updated on August 30, 2019. Written by Bastiaan van der Weij and Dieuwke Hupkes in 2016.
Updated by Peter Dekker (2017), Bas Cornelissen (2017, 2018, 2019) and Marianne de Heer Kloots (2018)
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1 Getting started

1.1 R

We assume you have some basic understanding of programming and R. You
will not have to write a lot of code yourself, but you should be able to read and
run the scripts that we provide you with. If you have never seen any R code
before, it might be useful for you to work through a tutorial, such as the first
three pages of this tutorial by Bart de Boer. Of course, you can always ask us for
help if you are stuck on a particular piece of code!

1.2 RStudio

We strongly recommend you use a particular environment for running your R
code, called RStudio. If you haven’t installed RStudio yet, you should do so by
finding the appropriate download of RStudio Desktop (Open Source License)
for your operating system on rstudio.com and following the instructions until
you can open the program.

1.3 Console & Scripts

When you open RStudio, you will find your screen divided into a few different
parts. The most important ones that allow you to interact with R are on the left.
The bottom left panel, called the Console, is where you can enter commands
directly, and where the results of your command will be shown immediately
after pressing Enter. When R is ready to accept commands, the Console shows a >
prompt. In the Console, you can retrieve commands that you entered previously
by using the up arrow key. However, when you close RStudio, all the commands
you entered in the Console will be forgotten. When you are using a sequence of
multiple commands and/or would like to run your code more often than once,
it is better to save them in a Script (a plain text file that contains your code). The
top left panel in your RStudio window is the Script editor. Here you can enter
commands that will not disappear after you run them (you can run a selected
line of code from the Script editor by pressing Ctrl-Enter). The tab at the top of
the panel will show the name of your script. R script filenames should end in .R.
For the commands given in the labs of this course, we will always tell you if you
should enter them in the Console or save them to your Script.

1.4 Working directory

To run a full script in R, you type source("scriptname") in the Console. To be
able to run a script, it should be available to R. In RStudio, the easiest way to
do this is to put them both in the same folder and set this folder as the working
directory. In the labs for this course, you should always set yourworking directory
to the folder with materials we provide for that lab (for this lab, that folder is
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lab-evolution-reconstruction). Look at this website to find out how to set the
working directory for your version of RStudio.

2 Simulated Evolution

The goals of this section are:

• to better understand the concepts of genotype, genotype space, fitness, fit-
ness landscape, selection, mutation, selection-mutation balance, frequency
dependent selection;

• to see how these concepts can be formalised in a computer program;

• to appreciate both the power and the limits of natural selection.

You need the following R files in the folder: and auxiliary_functions.R and
simulated_evolution.R.

QUESTION 1

• Start RStudio and set the working directory to your locally saved
lab-evolution-reconstruction folder.

• Open the provided answers_simulated_evolution.R file in the Script
editor (click File > Open File. . . in RStudio). This will be the script to
add your code to in this section of the lab.

• Install the package stringr by typing install.packages("stringr")
into the Console.

• Load the library stringr by typing library(stringr) in your Script.

2.1 Creating a population

In the first part of this computer lab, we will use R to simulate the evolution
of (DNA) strings under a particular fitness function. We will represent DNA
strings (the genotype) as a sequence of the letters ‘A’, ‘G’, ‘C’ and ‘U’. In R, you can
generate a random sequence of 10 of these letters using the following command
(try it out in the Console):

sample(c('A','G','C','U'), size=10, replace=TRUE)

To store the output in a variable (for instance x), you type:

x <- sample(c('A','G','C','U'), size=10, replace=TRUE)

You can then view the contents of a particular variable by simply typing its name
(here, x) and pressing Enter. Let’s experiment a bit with this.

QUESTION 2

• Using the commands you just learned, generate a few random se-
quences of length 10 containing the characters ‘A’, ‘G’, ‘C’ and ‘U’ to
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confirm that it does what we want it to do.
• Generate a random sequence of length 50 containing the characters
‘A’, ‘G’, ‘C’ and ‘U’.

• The set of all possible sequences is called the genotype space. How big
is this space? I.e., how many genotype strings are possible with our
representation?

Now, let’s create a population of DNA strings. To do this, we will make 100
genotype strings. Wewill store our population in a matrix (the population matrix),
where each member of our population is represented as a row of the matrix.

QUESTION 3

• Let’s start with creating a matrix filled with zero’s that we can later
fill:a Add this line to your Script:

population <- matrix(rep(0, 100), 100, 50))

So what do we find in column 30 of our population matrix, and what does
this numbermean? - Fill yourmatrix by generating 100 populationmembers
in a for-loop and filling the matrix with themb (also add these lines to your
Script):

population_size <- 100
for (i in 1:population_size) {

population[i,] <- sample(c('A','G','C','U'),
size=50, replace=TRUE)

}

aThe command matrix(x, height, width) command transforms a vector x into a matrix
with height height and width width.

bx[i,] accesses the ith row of the matrix x, which in our case thus corresponds with the
ith member of our population

2.2 Defining a fitness function

Now we need to define a fitness function that computes the fitness of the indi-
vidual members of our population. Imagine, for instance, that the string ‘CAC’
codes for some very useful aminoacid. The more CAC’s in the genome, the
higher the expected number of offspring. In our simulation of evolution, let’s
define the fitness as the number of times the substring ‘CAC’ appears in the
genotype string (without overlap, so the string ‘CACAC’ contains one copy of
‘CAC’).

To keep track of the fitness of all members in our population (which are repre-
sented as rows in the population matrix), we create a vector where each element
of the vector represents the fitness value for one member of the population.

QUESTION 4
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• Generate an empty vector to store the fitness values, and call it fitness
(add this to your Script):

fitness <- rep(0, population_size)

• Use a for-loop to fill the vector (created by the code above) with the
fitness values (also add this to your Script):

# loop over population size
for (i in 1:population_size) {
# generate string representation
member <- paste(population[i,], collapse='')

# compute fitness member
fitness_member <- str_count(member, "CAC")

# store in fitness vector
fitness[i] <- fitness_member

}

(Note that R ignores everything that follows the character #. In programming
terms, these texts are called comments.) What is the highest possible fitness
a member of this population can have? - Compute the mean fitness of your
population by using mean(fitness) in your Console. What is the average
fitness of your population?

2.3 Implementing selection

Now we will generate the next generation. We assume that each member of
the next generation inherits the genome of one of the members of the previous
generation. The probability of inheriting each genome is proportional to the
genome’s fitness: a child ismost likely to inherit the genome of the fittest member
of the previous population. This simulates selection.

QUESTION 5

• Compute the average fitness of the population and store it in a variable
(add this to your Script):

av_fitness <- mean(fitness)

• Generate 100 new children, using the built-in function sample (the
same one we used beforea) (also add this to your Script):

indices <- sample(100, size=100, replace=TRUE,
prob=fitness/sum(fitness))

new_population <- population[indices,]

• If one population member has fitness 10 and all the other population
members have fitness 1, what is the probability that a child will inherit
its genome from this one population member? What do you expect
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to happen with the population?
aWe first draw 100 random numbers between 1 and 100 (repetitions possible). If population

member 2 has a very high fitness, it will have a very high chance of being drawn. Then we use
the drawn numbers to create a new population of the members corresponding to the numbers.

QUESTION 6

• To simulate the evolution of the population, we want to repeat this
process several times and plot the average fitness over time. If you
like programming, you can try to do the implementation yourself, but
we also provided a script called simulated_evolution.R that does the
trick. You can run it by typing source("simulated_evolution.R")
into the Console. The next bullet point contains some instructions for
implementation, so if you use the script you can skip it.

• To repeat the previous process 100 times, you should create a for-loop
that executes the previous bits of code 100 times, storing the fitness
of every population in a vector. If you stored the fitness values in
av_fitness, then you plot your results using

plot(seq(1,100,1), av_fitness, type="l", ann=FALSE)
# Add a title and label the axes
title(main="title", xlab="x label", ylab="y label")

• Youwill notice the fitness stops increasing quite early in the simulation.
Why is this?

2.4 Evolution with mutation

In the previous simulation, we looked at selection without mutation. Let’s now
look at the case where every child’s nucleotide has a probability µ to change
into a random other nucleotide.

QUESTION 7

• If µ = 0.01, what is the chance that no changes occur in a genome?
What is the chance that no changes occur in an entire population?
And if µ = 0.001?

• Use the provided script simulated_evolution.R to do the same simu-
lation, but with a mutation level µ = 0.001. You can change the values
of the parameters at the top of the script. Also adapt the length of
the simulation to a number you think is suitable. After changing the
parameters, save the file and run the script again.

• Now repeat the simulation with µ = 0.01, and plot the fitness. This
shows the mutation-selection balance.

• In the simulation with relatively high mutation rate, why does the
fitness stop increasing at a slightly lower level?
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3 Simulated evolution with ancestry

In the previous section we implemented computer simulations of evolution in
R. In this section, we extend this simulation, and think about the patterns of
genetic variation that the evolutionary process leaves in a population. We look
at methods for phylogenetic tree reconstruction. These methods use the genetic
variation in the most recent (current) generation to reconstruct the evolutionary
history of a population or a set of species. We use a simple clustering algorithm1

for phylogenetic tree reconstruction.

The goal of this section is to learn about the possibilities and difficulties that are
involved in phylogenetic tree reconstruction.

You need these two R files in the lab-evolution-reconstruction folder:
auxiliary_functions.R and simulated_evolution_ancestry.R. To plot the
phylogenetic trees with R, you will also need to have the package ggtree. Install
it by typing the following into the Console:

source("https://bioconductor.org/biocLite.R")
biocLite("ggtree")

3.1 Tracking ancestry

So far, we have simulated the evolution of strings of symbols, and looked at
the effect of different fitness functions. Now we will repeat this simulation,
but during the evolutionary process we will keep track of ancestry, so that we
can reconstruct family trees of different individuals. We will start with a very
simple simulation. The script simulated_evolution_ancestry.R runs the same
simulation we saw in the previous part of this lab. This time, however, the script
also generates a matrix called parent_matrix that specifies the parent of each
member in each generation (where the parent is the individual of the previous
generation whose genetic material was inherited). At the end of the simulation,
a plot illustrating the development of both the average population fitness and
the diversity of the population is generated.

QUESTION 8

• Change the parameters at the top of the file simulated_evolution_
ancestry.R. Set both population_size and simulation_length to 10.
What values do you expect on the y-axes of these plots? What do
you think the curves of average population fitness and population
diversity look like? At what point do you expect the curves to start
and finish?

• Run the script by executing the following command in the Console:

1An algorithm is a description of a series of steps to do arrive at a certain end result or perform a
calculation. Algorithms can for example be implemented by a computer program.
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source("simulated_evolution_ancestry.R")

Are the results as you expected?

QUESTION 9

• Visualise the parent matrix by running the following from the Console:

print_parent_matrix(parent_matrix)

Where in this plot can you find the first generation? - Follow some paths
up and down. Why do downward paths often end in dead ends, whereas
upward paths always go all the way up?

QUESTION 10

Change the parameters back to their original settings:

population_size <- 100
simulation_length <- 1000

• Run the simulation again (this may take a while).

3.2 Plotting the family tree

Printing the parent matrix for such large simulations is not very helpful, because
the network is too dense to properly visualise (you may try if you want). Rather
than looking the parent matrix, we will use the parent matrix to reconstruct a
family tree for only the last generation (that is, we only look at the members of
previous generations whose offspring appears in the last generation.) We will
then generate a visual representation of the tree.

QUESTION 11

• From the data you just generated, generate a family tree with the func-
tion reconstruct_tree and visualize it with the function plot_tree.
Enter the following into the Console:

tree <- reconstruct_tree(parent_matrix)
plot_tree(tree)

• If the plot_tree function for some reason does not work on your com-
puter, you can also use an online phylogenetic tree viewer. First
generate a textual representation of the phylogenetic tree by typing
print_tree(tree) in the Console. This prints a string with lots of
brackets and numbers describing the tree in the so-called Newick
format. Copy everything between the quotes. Go to icytree.org and
click File > Enter tree directly.... Paste the textual representation you’ve
just copied and click Done.
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• As far as you can judge, how many generations ago did the LCA of
the current population live?

• Which aspects of evolution leave traces that we can detect in the
current generation and which aspects do not?

4 Phylogenetic reconstruction of biological data

In evolutionary research, the elaborate ancestry information represented by
the parent matrix is usually not available. To reconstruct family trees we have
to resort to different methods. Information about when species branched off
(‘speciated’) can be deduced from genetic variation in the current population.
For instance, horses are geneticallymore similar to donkeys than to, say, frogs. So,
the last common ancestor of horses and frogs most likely lived much further in
the past than the last common ancestor of horses and donkeys. In other words,
the branch that would eventually evolve into frogs split off from the branch
that would eventually evolve into horses earlier than the branch that would
eventually evolve into donkeys. This type of analysis is called phylogenetic
reconstruction. It’s based on genetic similarity between members of the current
generation, which we measure using a distance measure. There are R packages
that can automatically perform this reconstruction. Lets start with installing
these packages:

QUESTION 12

• Open the provided file answers_phylogeny_biological.R in the Script
editor (click File > Open File.. in RStudio). This will be the script to add
your code to in this section of the lab. Install the packages ape and
phangorn by typing in your Console:

install.packages("ape")
install.packages("phangorn")

Load them in your Script using:

library(ape)
library(phangorn)

The phangorn package comes with a dataset that contains real genetic data (i.e.,
RNA samples) from many different species. You can load this dataset by typing
the following (add it to your Script):

data(Laurasiatherian)

To show a summary of the data you can type str(Laurasiatherian) in the
Console. The data originates from the (now closed) Allan Wilson Centre in New
Zealand. To find out more about this data, have a look at their website.

Wewill try to reconstruct a phylogenetic tree for these species. That is, wewill try
to reconstruct when different species branched off from each other, based only
on genetic information of the current population (the last generation). The first
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step is to measure ‘genetic distance’ between the genetic samples for each species.
For simplicity, we assume that (1) all species ultimately originate from a single
common ancestor (an uncontroversial assumption in evolutionary biology), and
(2) that species have diverged genetically by picking up mutations at a roughly
constant rate (a more problematic assumption). (Try and convince yourself
that the phylogenetic tree reconstruction method we described requires the
second assumption— and that this assumption is problematic when considering
evolution in the real world.)

The distance between strings of DNA or RNA is typically measured by counting
the number of mutations required to change one into the other. Because of the
second assumption, the genetic distance between two species is proportional to
the time that has passed since their last common ancestor.

QUESTION 13

• Select five species from the Laurasiatherian dataset (for instance three
that you think are closely related and two that are more distantly
related).

• Create a subset of the data containing just these five species using this
line (add it to your Script):

mysubset <- subset(Laurasiatherian, subset=c(19,20,28,29,30)

The numbers correspond to the position of the species in the list printed
by str(Laurasiatherian), i.e. Platypus = 1, Possum = 3, etc. ) You have to
replace these numbers by the numbers corresponding to the species that
you chose. - Verify that your subset contains the right species using the
following from the Console:

str(mysubset)

• Compute the pairwise distance between all elements in the set using
the function dist.ml and print it (add these lines to your Script):

distance_matrix <- dist.ml(mysubset)
print(distance_matrix)

The results are stored in a distance matrix. How can you read off the distance
between two species from this matrix? Why are the numbers on the diago-
nal of this matrix zero? - Do the computed distances correspond to your
intuitions about the selected species’ relatedness? - Using pen and paper,
or your favourite drawing software, reconstruct a phylogenetic tree that
describes the evolutionary relations between your selected species. Use the
principles described earlier. You shouldn’t need to do any calculations.
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5 Phylogenetic trees with hierarchical clustering

5.1 UPGMA

We can use a simple method called ‘hierarchical clustering’ to build the phyloge-
netic trees such as in the previous sections automatically. Hierarchical clustering
can be done with the UPGMA algorithm. (If you need a refresher on how ex-
actly it worked, look up the UPGMA chapter from the readings again!) In short,
UPGMA follows these steps:

• Treat each datapoint (for example, a RNA sample of a species) as a separate
“cluster” containing just one datapoint;

• Compute the distances between all clusters (using some distance measure;
for example, genetic distance);

• Merge the two clusters that are nearest to each other into a new cluster;
• Repeat steps 2 and 3 until only all datapoints are in cluster.

5.2 Constructing a tree

To construct a phylogenetic tree, we can think of each merging of clusters as the
joining of two branches. In the simplest version of this algorithm, we define
‘distance’ between a cluster A and a cluster B as the average distance between
any datapoint in A and any datapoint in B — this is what UPGMA does. A
slightly more complicated method, Ward’s clustering, uses the square root of
the average of the squared point-to-point distances.

QUESTION 14

Using the distances between species in mysubset (from the distance matrix
you computed in the previous section), manually perform three cycles of
the UPGMA algorithm with pen and paper.

The phangorn package we installed earlier provides pre-defined functions im-
plementing different hierarchical clustering methods.

QUESTION 15

• Generate a phylogenetic tree for your subset and plot it using the fol-
lowing commands (add this to your answers_phylogeny_biological.R
script):

tree <- upgma(distance_matrix, method='average')
plot(tree)

Is the tree the same as the one that you created before with pen and paper?
- Create a tree for the entire dataset. Does it agree with your expectations? -
Optional: Try different methods for computing the distance between clus-
ters by changing the parameter method (options are, for instance, ’ward.D’,
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’single’ and ’median’). Do you notice any changes in the resulting phylo-
genetic trees?

We will now investigate what happens if we perform phylogenetic analysis on
the population resulting from our own simulated evolution. Remember that,
since this is a simulation over which we have full control, we can reconstructed
the actual phylogenetic tree using the information that we stored in the parent
matrix.

QUESTION 16

• Open a new R script for this exercise: open the provided
answers_phylogeny _simulated.R file in the script editor (click
File > Open File... in RStudio). Add all the code in this exercise to your
Script.

• Run the script simulated_evolution_ancestry.R again to generate a
new population and parent matrix:

source("simulated_evolution_ancestry.R")

• Generate a distance matrix of the last generation from your simulation
using the function compute_distance_matrix:

distance_matrix <- compute_distance_matrix(population)

• Reconstruct a phylogenetic tree with the upgma function (choose your
preferred method, e.g. ’ward.D’) and plot it:

tree <- upgma(distance_matrix, method='ward.D')
plot(tree, cex=0.3)

The parameter cex sets the font size of the plot, adjust it if the numbers are
illegible.

• Now generate the actual family tree of the simulation by running

gold_standard_tree <- reconstruct_tree(parent_matrix)
plot_tree(gold_standard_tree)

How well does the reconstruction produced by the hierarchical clustering
algorithm match the actual family tree?

• How can you explain the differences between the reconstructed and
the actual family tree?

6 Phylogenetic reconstruction of languages

In the tutorial you have learned about features of language and music used in
comparative research, and about variation across languages and musics. By
studying some specific examples, you have seen that both languages andmusical
traditions are transmitted culturally, and are subject to a process of cultural
evolution. In this final section of the computer lab, you will use the methods
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that we saw for phylogenetic tree reconstruction in the previous sections to
reconstruct the cultural evolutionary history of languages.

Youwill need the file language_data.Rdata from the lab-evolution-reconstruction
folder, and you will also need to have the packages ape and phangorn installed.

QUESTION 17

Open the provided file answers_phylogeny_language.R in the script editor
(click File > Open File. . . in RStudio). Add all the code in this section to your
Script. We preprocessed the dataset for you so it can be loaded into R. To
do this, type the following:

load('language_data.Rdata')

This will create an object called mydata containing the dataset. You can
check the languages in the data by typing names(mydata) in the Console.
Load the packages ape and phangorn using:

library(ape)
library(phangorn)

• Choose a subset of the list of languages. We will initially build a
phylogenetic tree of this subset. Define your subset with the subset
function. For instance, if you want to select language 40, 41, 42, 58
and 60 you type:

mysubset <- subset(mydata, c(40:42,58,60))

Create a distance matrix of your subset, by letting the computer count the
number of feature values that differ between two languages (“hamming
distance”):

distance_matrix <- dist.hamming(mysubset)

• Pick your favourite clustering algorithm and method and generate a
tree, for instance:

tree <- upgma(distance_matrix, method='ward.D')

• Plot your tree:

plot(tree, use.edge.length=FALSE, cex=2)

• Do the same thing for the entire dataset (you might want to adapt
the cex parameter, that sets the fontsize of the plot). Be aware of the
influence the clustering algorithm and method for computing the
distances between clusters can have.

• What are the nine main language families you can distinguish within
the Indo-European family, and in which regions of the world are they
spoken (before colonial times)?
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