
Computing Transitional Probabilities

Contents
1 Background 2

2 Before coding 2

3 Writing the code 3
3.1 Loading the data . 3
3.2 Counting frequencies . 3
3.3 Computing TPs . 4
3.4 Computing the probability of any sequence 4
3.5 Computing probability for test items 5
3.6 Computing average probability 5
3.7 Plotting . 6
3.8 Generating sequences . 6

References 6

The goal of this computer lab is that you become familiar with Python. This
document will guide you through the steps of writing a very simple program
that computes Transitional Probabilities.

Goals. The goal of this computer lab is that you become familiar with Python.
This documentwill guide you through the steps ofwriting a very simple program
that computes Transitional Probabilities. We also provide you with a Python
tutorial1, which includes slides and Jupyter notebooks. You can choose to either
start with the notebook tutorial and continue with the assignment afterwards,
or to directly start with the assignment and consult the slides or the related
notebook when you want to find out more about some particular aspect of the
language. Whichever strategy you use, you can always ask your lecturer and TA
whenever you need some clarification. Of course you can also check the official
Python documentation and the recommended tutorials.

Last updated on September 2, 2019. Written by Raquel G. Alhama and Samira Abnar (2018) Updated by
Bas Cornelissen (2019).

1The tutorial was developed by the Computational Cognitive Neuroscience Summer School
(2016)

1

https://www.python.org/about/gettingstarted/

Requirements. For this lab, youwill need an installation of Python3, the package
matplotlib, and jupyter notebooks. You can install Python and matplotlib at
the same time by installing Anaconda, a distribution for scientific computing
that contains many useful packages. Alternatively, you can install Python and
matplotlib without Anaconda. To do so, follow these instructions. Once Python
is installed, you can install matplotlib as indicated here. Finally, follow these
instructions to install Jupyter notebooks.

Files. In order to complete the assignment, you also need to use the jupyter
notebook materials/transitional-probabilities.ipynb and the files contain-
ing the familiarization stimuli: materials/SaffranAslinNewport1996_1A and
materials/SaffranAslinNewport1996_2A.

1 Background

Saffran, Aslin, and Newport (1996) showed that 8 month old infants are sensitive
to transitional probabilities in a speech stream, and can use them so identify
word-like units. The transitional probability between two syllables X and Y is
defined as the conditional probability that Y occurs after X :

P (Y |X) =
counts(XY)

counts(X)

In this computer lab, we will develop a very simple Python program that takes
as input the transcribed speech stream used in the experiment by Saffran and
colleagues, and computes the transitional probabilities in it.

2 Before coding

First of all, it is useful to identify the subtasks that our program will need to
perform:

1. Load the input data.
2. Compute the counts for each syllable (unigram) and for each consecutive

pair of syllables (bigram).
3. Compute the TPs of any given pair of syllables.

When programming, it is good practice to create a different function for each
specific task. A function is an encapsulated block of code that (optionally)
receives some input parameters, does something, and (optionally) returns an
output; you can think about it as a small program inside the bigger program.
For instance, the following function receives two parameters as input, performs
some operation (in this case, it sums the parameters) and returns the result of
the sum.

def function_name(parameter_1, parameter_2):
result = parameter_1 + parameter_2
return result

2

https://www.continuum.io
https://wiki.python.org/moin/BeginnersGuide/Download
http://matplotlib.org/users/installing.html
http://jupyter.org/install.html
http://jupyter.org/install.html

Part of thiswork has already beendone for you: open the file transitional-probabilities.ipynb
with jupyter. In the last cell you can find this:

if __name__ == '__main__':
print("This is the lab on transitional probabilities")
stimuli = readStimuli("SaffranAslinNewport1996_2A.txt")
unigram_dict, bigram_dict = count(stimuli)
print("These are the counts for unigrams: ", unigram_dict)

The first line is the entry point from where the program starts running, and
it looks the same in every program. This program starts printing a friendly
message (This is Lab 2 of CMLM :)), and then calls one of the functions defined
above, readStimuli, and provides it with one parameter (the name of the file
that contains the stimuli). At this point, the programwould jump to the function,
execute it, and store the returned value in the variable called stimuli. The next
line performs another function call, and stores the two returned values in two
variables. Finally, the value of one of the returned values is printed. You can
run the program and see the output.

3 Writing the code

3.1 Loading the data

The first task we identified is loading the data. This entails opening the file that
contains the stimuli, loading the stimuli into memory (so that it is available for
latter processing), and closing the file.

In the code you have been provided, this function is called readStimuli. The
lines starting with # , and the text enclosed in ''' (some text) ''' are ignored
when the program is executed. They are very useful to keep the code readable:
the former, called comment, can be added anywhere in the program, while the
latter is mostly used to generate automatic documentation of the code.

Read the code in this function and try to understand it. If it is difficult, it may be
useful to solve the tutorial notebooks 1 and 2.

3.2 Counting frequencies

According to the formulas for computing TPs, we need the count of single
syllables (unigrams) and pairs of syllables (bigrams). Python offers us a very
useful structure that we can use to store these counts: the dictionaries. In the
tutorial notebook 5 you can find a short tutorial about using dictionaries.

Try to understand the following lines. It may be helpful to try some of the code
separately in the python console. For instance, what does len([1,2,'a']) do?
And range(10)?

for syll_idx in range(len(list_of_syllables)):
form unigram of syllables at index
unigram = (list_of_syllables[syll_idx])

3

see if we have already seen this unigram
if unigram in unigram_dict:

if so, up the count by 1
unigram_dict[unigram] += 1

else:
if not, set the count to 1
unigram_dict[unigram] = 1

QUESTION 1

Extend this function so that it also counts bigrams. Report your code and
the counts. Hint: you can represent two syllables in a single variable us-
ing tuples. Remember that you can test your function by calling it from
__main__. (2 points)

3.3 Computing TPs

Now we have a function that computes two dictionaries that contain all the
counts that we may need. Next, we need to write the code for a function that,
given a particular pair of syllables X and Y , returns the transitional probability
T (Y |X).

QUESTION 2

Complete the code for the function TP. (1 point)

The participants in Saffran, Aslin, and Newport (1996) were familiarized with
an artificial language, carefully designed by the authors so that it would have
certain transitional probabilities. Concretely:

“The only cues toword boundaries were the transitional probabilities
between syllable pairs, which were higher within words (1.0 in all
cases, for example, bida) than between words (0.33 in all cases, for
example, kupa).”

Let’s check whether that is true.

QUESTION 3

What are the transitional probabilities for bida and kupa? (Use the stimuli
for experiment 1A). (0.25 points)

3.4 Computing the probability of any sequence

Now that our program can compute transitional probabilities between syllables,
we can extend it with a function that computes the probability of a sequence of

4

any length. In order to do so, we need to compute the product of all the bigrams
in such sequence.2

QUESTION 4

There is a sketch of this function in the code (called sequenceProbability).
Complete it with the missing code. (1 point)

3.5 Computing probability for test items

Now we can actually compute the probability for the words and part-words in
experiment 2A in Saffran, Aslin, and Newport (1996). You can use nested lists
to store the sequences (i.e. lists of lists of syllables):

words = [['pa','bi','ku'],
['ti', 'bu', 'do'],
['go', 'la', 'tu'],
['da', 'ro', 'pi']]

part_words = [['tu', 'da', 'ro'], ['pi', 'go', 'la']]

QUESTION 5

Create a function that computes the probabilities of each sequence in a list,
and returns them. (1 point)

3.6 Computing average probability

Create a function that uses the previous function to compute and returns the
mean probability for all the items in the list you give it.

QUESTION 6

Extend the previous function so that it computes the average probability, and
returns it. Report the average probability for the words and the partwords.
(0.75 points)

:
2This estimation of the probability of a sequence is slightly simplified, since wewould also have to

take into account the probability for the first syllable to occur in the first position, and the probability
of the last syllable to occupy the ending position. In order to do so, n-gram models compute the
probability for the first and last syllable by adding a virtual initial and final symbol. This makes
sense when the input is a large corpus with a big number of sentences, since those will contain a
significant number of initial and ending symbols. However, since we are dealing with unsegmented
input, we could only add 1 initial symbol and 1 ending symbol, so any most syllables would have a
probability of zero for starting or finishing a sentence. Thus, for this experiment we take a simplified
estimation of the probability of a sequence.

5

3.7 Plotting

We can now use the computed probabilities to visualize them in a graph. The
notebook tutorial 3 contains a tutorial for basic plotting with matplotlib.

QUESTION 7

Create a function that receives a list of probabilities as input and creates
a barplot with the probabilities. Use it to plot the average probability of
words versus the average probability of part-words. Hint: You can find
useful graph examples in the online documentation of matplotlib. (2 points)

3.8 Generating sequences

Some models of language and music can also be used to generate instances of
language or music. In our case, once we have run our program to compute the
TPs of the input, we can use those TPs to generate a sequence.

Choose a corpus of natural language (e.g. you can use the Tom Sawyer corpus
from the last computer lab). Compute the transitional probabilities between
words and use them to generate a few new sentences.

Note: In order to change the level at which the probabilities are computed (e.g. to
characters, or to words), you have to adapt the function that reads the file. The
function re.findall uses a regular expression. Adapt the expression for one
character only, or for words (you can find documentation here).

QUESTION 8

Extend the program so that it reads a natural language corpus, computes
the transitional probabilities and uses these probabilities to generate a new
sequence. Try it at the character level and the word level. How different are
the results? What kind of errors does your model make? Why? Hint: you
can generate (pseudo-)random numbers in Python with the library random.
(2 points)

References

Saffran, Jenny R, Richard N Aslin, and Elissa L Newport. 1996. “Statistical
Learning by 8-Month-Old Infants.” Science 274 (5294): 1926–8. https://doi.org/
10.1126/science.274.5294.1926.

6

http://matplotlib.org/examples/lines_bars_and_markers/barh_demo.html
https://docs.python.org/2/library/re.html
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1126/science.274.5294.1926

	Background
	Before coding
	Writing the code
	Loading the data
	Counting frequencies
	Computing TPs
	Computing the probability of any sequence
	Computing probability for test items
	Computing average probability
	Plotting
	Generating sequences

	References

