
Language Modelling with Recurrent Neural
Networks

Contents
1 Feed Forward Neural Networks 1

1.1 Data . 2
1.2 Architecture . 2
1.3 Training . 4

2 Word Embeddings 5

3 Recurrent Neural Networks 6

In this computer lab, you become familiar with implementations of some com-
mon neural network models: the feed forward neural network, and the recurrent
neural network. We will apply these networks to natural language modelling.

Requirements. This assignment uses Python 3 and the library numpy, an ex-
tremely useful and popular library for working with vectors and matrices in
Python. Here you can find a quick introduction to Numpy. You also need to
install the python libraries nltk (the Natural Language Toolkit) and sklearn
(Scikit-learn). You can install both libraries easily with pip or conda.

Note on training. It may take long for the models in this assignment to be
trained, if it is unreasonably slow on your computers it’s ok to run them for
fewer iterations. But of course this means you will get worse results and they
will be harder to interpret.

1 Feed Forward Neural Networks

Let’s jump right in. In the first part of the assignment, you will train a feed
forward neural network to predict the next word, given the current word. In
other words, you train it to generate bigrams. The idea is that we feed a word to
the network and want it to output the next word. To get the network to do this,

Last updated on September 2, 2019. Written by Samira Abnar (2018). Updated by Bas Cornelissen
(2019).

1

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
http://www.nltk.org/

we need to train it. The training data will be a collection bigrams taken from
some corpus. During training, we feed the first word of a bigram (the input)
to the network, and see if the output matches the second word of the bigram
(the target). Next we update the parameters of the network in such a way that
predicting the target becomes more likely.

1.1 Data

Before we turn to the network, we need some training data. The file
DataReader.py contains a class DataReader that reads out a text file, ex-
tracts (preprocessed) bigrams which serve as the training data. In this
lab we will use Reddit comments as training data, which can be found in
materials/reddit-comments-2015-08.txt:

from DataReader import DataReader
dr = DataReader('reddit-comments-2015-08.txt')
inputs, targets = dr.get_training_bigrams()

If you run this code, you might get the error "Resource punkt not found"
because the nltk library uses datasets that you have to download first. The code
should run after following the instructions in the error message:

$ python
>>> import nltk
>>> nltk.download('punkt')

You can see that inputs and targets are large matrices filled with zeros and
ones. Why is that, if they should be words and the next words? Because we
can’t feed actual words (text) to a neural network: we have to represent them as
numerical vectors. The simplest representation is a so called one-hot encoding. If
we have vocabulary ofM words, the one-hot representation of the i-th word is a
vector of lengthM with only zeros, except for a 1 at at position i.

The DataReader implements all this: it computes training bigrams in a one-hot
representation. You can en/decode words using the dr.index_to_word and
dr.word_to_index dictionaries. For example, you can find the the 4-th input
word using dr.index_to_word[inputs[4].argmax()].

1.2 Architecture

If you are not familiar with artificial neural networks, do look for some intro-
ductions. Very briefly, a network consists of nodes organized in layers, such as
an input layer, a hidden layer and an output layer. Every node has an activation
(a number), which is computed from the activations of the nodes feeding into it,
and the weights of the corresponding connections. Mathematically, the activa-
tion of a node is the weighted sum of the incoming activations – nearly, since we
further apply a non-linearity such as tanh. It turns out that we can conveniently
compute all activations in a layer at once using matrix multiplication. To give
you an idea: if x = (x1, ..., xn) is a vector with the activations of the input nodes,
and W is a m × n matrix containing the weights of all connections between

2

this and the next layer, then the activations y = (y1, ..., ym) of the next layer are
y = tanh(W.x), where ‘.’ is the dot-product.

The neural network we focus one here has one hidden layer, and therefore two
weight matrices: Win, which maps the input layer to the hidden layer; and
Wout, which maps the hidden layer to the output layer. The weights are the
trainable parameters of the network. In the case of next word prediction, both the
input and output layers represent words and must have the same size (namely,
the vocabulary size). The hidden layer, however, can have any dimensionality.
Which size of the hidden layer works best is depends on the task. It is a so called
hyper-parameter – more about that later.

In FeedForward.py you find the FeedForwardNN class which implements a feed
forward neural network with one hidden layer. Try to understand how the codes
work by looking at the methods of the class and reading the comments if it’s not
clear what each method is doing.

QUESTION 1

The init_params method initializes the weight matrices Win and Wout.

• What should be the dimensions of these matrices?

• What is the total number of parameters of this model?

• You already see the code that initializesWin. Adjust it to also initialize
Wout.

In a feed-forward neural network forward propagation is passing the input signal
through the network while multiplying it by the respective weights to compute
an output. The forward_passmethod implements all these computations for you:
it computes the output of the network for a given input and model parameters.

QUESTION 2

Look at the forward_pass method and draw a graph that illustrates how
the output of the network is computed based on the input and model
parameters. Include the relevant mathematical operations.

Here is how you can instantiate FeedForwardNN, and apply it to the data.

neural_network = FeedForwardNN(input_dim, hidden_dim, output_dim)
hidden_state, output_state = neural_network.forward_pass(inputs)

QUESTION 3

What is the loss of the model before training? Compute this using the
calculate_loss method.

3

https://en.wikipedia.org/wiki/Dot_product

1.3 Training

Now, let’s train the model. There are all kinds of search algorithms to find the
optimal parameters of amodel: grid search and hill climbing are two examples of
such optimization algorithms. But it would be very inefficient to use something
like grid search to optimize the parameters of a neural network, because it can
have such a large number of parameters. Instead, neural networks are commonly
trained using back propagation (backward propagation of errors) along with an
optimization method such as gradient descent. The idea behind gradient descent
is to change the parameters in a direction that decreases the loss. But instead of
examining neighbouring points randomly like in hill climbing, the gradient of the
loss function is used to determine the direction of the change. We won’t explain
back propagation in detail here. If you are interested, look at this blogposts by
Chris Olah, or this chapter by Michael Nielsen.

There are three variants of back-propagation:

• batch training: all the training items are used to calculate an accumulated
gradient for each weight and bias, and then each weight value is adjusted.

• online training: the gradients are calculated for each individual training
item, and then each weight value is adjusted using the estimated gradients.

• mini-batch training: a batch of training items is used to compute the
estimated gradients, and then each weight value is adjusted using the
estimated gradients.

You can consider the choice of one of these variants of backpropagation a param-
eter of the training procedure. In order to distinguish the training parameters
from the model parameters, we refer to the former as hyperparameters. Other
hyperparameters are the learning rate (how much we adjust the weights in each
iteration); the number of epochs or training iterations and architectural choices
like the size of the hidden layer.

The back_propagate_update method in the FeedForwardNN class contains the
code for updating parameters of the network with backpropagation. This
method is called in the train method, which takes the hyperparameters as
optional arguments. It returns an array with the loss after every iteration. The
following code demonstrates how you can train the network:

Load the training data; inputs = words, outputs = next words
dr = DataReader()
inputs, targets = dr.get_trainig_bigrams()

Initialize the neural network
vocabulary_size = len(inputs[0]) # = length of the first word-vector
neural_network = FeedForwardNN(

input_dim=vocabulary_size,
hidden_dim=256,
output_dim=vocabulary_size)

Train the network
trace = neural_network.train(

inputs, targets,

4

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
http://colah.github.io/posts/2015-08-Backprop
http://neuralnetworksanddeeplearning.com/chap2.html

num_iterations=100,
learning_rate=0.01,
batch_size=50)

After training, you can access the trainedmodel parameters as neural_network.W_in
and neural_network.W_out. If you want to use them later, it is convenient to
store them using np.save("my_filename.npy", neural_network.W_in), and
later load them using neural_network.W_in = np.load("my_filename.npy").

QUESTION 4

Use the code above to write a function that trains a feed forward neural
network on next word prediction. It should take the hyperparameters
hidden_dim, learning_rate and batch_size as arguments. Train models
with three different hidden layer sizes and three different learning rates.
Store the traces and afterwards plot the loss per iteration for all experiments.
Can you explain what you find?

2 Word Embeddings

So far, we have represented words as one hot vectors. Although computing
those vectors is easy, the representation is far from ideal. It fails to capture any
linguistic structure: words with similar meanings need not have similar vectors,
for example. All one-hot vectors are equally far apart. But you might imagine
that the better your word vectors capture linguistic properties (such as meaning
or grammatical categories), the better you can solve linguistic tasks.

Now, it turns out that neural language models internally often learn better word
representations, even if we don’t explicitly train them to do so. Take next word
prediction: we update a network only based on its predictions, not on how it
internally represents the words. But apparently the network can solve the task
better if it also learns to represent the words in a linguistically more meaninguful
way.

What is this magical internal representation? It is the vector of activations of
the the first layer after the (one-hot) input layer. In complex networks with
many layers, this layer is called the embedding layer: it embeds the one-hot
vectors in some fixed-dimensional embedding space. In a well-trained model, this
embedding space has typically picked up meaningful linguistic structure. This
really is quite surprising – see this blogpost by Chris Olah for some examples.

Let’s treat the hidden layer of our simple feed-forward network as an embedding
layer and see if it reflects linguistic structure: do similar words cluster together?
To do so, we compute the hidden state for every one-hot vector, and use the hid-
den states as embeddings. These are high-dimensional vectors, and to visualize
them we use t-SNE, which is wonderfully illustrated in this article.

5

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations
https://distill.pub/2016/misread-tsne/

QUESTION 5

For each word in the training data, compute its word embedding: the
corresponding hidden state. Feed the embeddings to the t-SNE plotting
function to plot the embeddings in a 2-dimensional space. Do you see any
kind of regularity in this plot? Repeat this experiment with different sizes
of hidden the layer (eg. 128, 256, 512):

3 Recurrent Neural Networks

Feed forward neural networks deal with one input at a time: they have no way
to deal with sequences of data, like text: sequences of words. We now turn to
recurrent neural networks which were designed to deal with sequential data. They
add a so called recurrent connection to the network, from hidden state to itself.
As a result, at every timestep the hidden state depends not only on the input
at that timestep, but also on the hidden state at the previous timestep. This
history-dependency allows it to capture sequential structure. For some quick
introductions to recurrent neural networks, you can look at this blog post by
Camron Godbout or this blog post by Denny Britz.

Open RNN.py. Here you see the RNN class. This is an implementation of a recurrent
neural network with one hidden layer. Take a look at the methods of the class.
Read the comments if it’s not clear what each method is doing.

QUESTION 6

Look into the init_paramsmethod, where the weight matrices, parameters,
of the model are initialized. What is each weight matrix for? What are
the dimensions of each of these matrices? What is the total number of
parameters of this model?

QUESTION 7

The forward_pass function is the method that defines how the output
should be computed. Draw a graph that shows how the output is computed
based on the input and the parameters.

QUESTION 8

Initialize an RNN and apply it on the training data (before training, using
randomly initialized parameters). What is the loss? Now initialize the input
weight matrix with the learned embedding matrix from the feed forward
network. What is the loss now? compare the results.

Since in recurrent neural networks, at each time step the output depends also on
the hidden state at the previous step, the error also needs to be propagated to

6

https://medium.com/@camrongodbout/recurrent-neural-networks-for-beginners-7aca4e933b82#.aswkxfdhx
https://medium.com/@camrongodbout/recurrent-neural-networks-for-beginners-7aca4e933b82#.aswkxfdhx
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

the previous time step. This is why it is called back propagation through time
(BPTT).

BONUS 8

The back_propagation_through_time method is the implementation of the
BPTT for a recurrent neural networkwith one hidden layer. Change the code
so that it propagates the error up to max_back_steps. Train the RNN with
the sentences datasets for different values for max_back_steps: 1, 3, 5 and
10. First, run the experiment for one iteration and plot the loss function per
number of seen sentences. Then run the model for multiple iterations (until
the loss function doesn’t decrease significantly) and plot the performance
of the model per iteration.

BONUS 8

Use both RNN and FeedForwardNN to compute sentence prediction loss and
generate sentences. Which one would you expect to perform better? Why?
Are the results consistent with your executions? If not, why do you think
this happens? Include performance plots and example sentences in your
answer.

Hint 1: To compute sentence loss for the feed-forward neural network use
the calculate_sentence_loss method defined in the FeedForwardNN class.

Hint 2: To generate sentences for both models use the generate_sentence
method defined in each of the classes.

7

	Feed Forward Neural Networks
	Data
	Architecture
	Training

	Word Embeddings
	Recurrent Neural Networks

