
Retention & Recognition
A Computational Model for Segmentation in Artificial Language

Learning

Contents
1 Introduction 2

2 Model fitting 3
2.1 An example model: a polynomial 3
2.2 Grid search . 4
2.3 Hill climbing . 5

3 The RnR model 6
3.1 The data . 6
3.2 The model . 7
3.3 Training . 8
3.4 Evaluating . 9

References 9

The goal of this computer lab is that you train a segmentation model, fitting its
parameters to empirical data, and evaluate its performance.

Note. There are some problems with the second part of this lab, but the first
part of this lab (the model fitting) should be fine.

Goals. The goal of this computer lab is that you train a segmentation model,
fitting its parameters to empirical data, and evaluate its performance. The model
that you will train is the Retention&Recognition model (RnR henceforth). You
can find a short description of the model in Alhama, Scha, and Zuidema (2015)
and in the slides in the materials/ directory. Wewill use the data and evaluation
procedures described in Frank et al. (2010).

Requirements. The lab uses Python 3 with the libraries matplotlib and numpy.
If you don’t have these libraries installed you can install them using pip or conda.
In case you are not very familiar with drawing plots in python, you might find
this matplotlib gallery helpful.

Last updated on September 2, 2019. Written by Raquel G. Alhama (2017). Updated by Bas Cornelissen
(2019).

1

http://matplotlib.org/gallery.html

Materials All materials can be found in the materials/ directory; the subdirec-
tory data contains three files, each one containing human responses for each of
the three experiments described in Frank et al. (2010). In the src directory you
find the following python files:

• models.py contains implementations of the examplemodel (PolynomialModel)
and a wrapper for the Retention&Recognition model (RnRModel).

• optimization.py contains the two optimization algorithims we use in this
lab: grid search and hill climbing.

• experiment.py contains the code to generate the stimuli used by Frank et
al. (2010), and to load their experimental results.

• RnR.py implements the Retention&Recognition model. You don’t need to
understand the details.

You don’t need to understand what happens in experiment.py and RnR.py, only
how you can use it. You do, however, need to to understand what the first two
files are doing.

1 Introduction

When learning a language, infants learn to identify word boundaries in the
streams of speech sounds they hear. Artificial language learning paradigms
have been used to study how they can do this. Typically, subjects are exposed
to an artifical stream of speech sounds containing statistical regularities. After
listening to this for a while, they are presented with a sound and have to decide
whether it is a word or a partword.

In this computer lab we look at a computational model of precisely this: segmen-
tation in artificial language learning: the Retention&Recognition (RnR) model
(Alhama, Scha, and Zuidema 2015; Alhama and Zuidema 2017). This is a proba-
bilistic segmentation model that tries to break a given stream of syllables into
segments. The model works based on two probabilities: the recognition probabil-
ity and the retention probability. The recognition and retention probabilities of a
segment s are computed as follows:

Prec(s) = (1−Bactivation(s)) ·D#types

Pret(s) = Alength(s) · Cπ

As you can see, the model involves four parameters A,B,C and D that should
be fitted to empirical data. Computational models normally include a set of free
parameters. The behaviour of the model changes depending on the values of
such parameters. Hence, after choosing a computational model, the next step is
to set the parameters of the model so that the behaviour/output of the model
is consistent/similar to the phenomenon that is being modelled. This is what
we call training or fitting the model. To explain this in more detail, we are first
going to train an example model: a polynomial of degree 2, where it is easier to
see what is going on. After that, we return to the RnR model.

2

2 Model fitting

2.1 An example model: a polynomial

To get started, we are going to model the relation between two variables x and
y. We have a set of n observations (xi, yi) and now want to formulate a model
that predicts the value of y for a given x. In other words, we want to fit a curve
through the observed points (xi, yi). After long deliberation we decide that the
curve should be a polynomial of degree 2. The predicted value ypred for a given
x then takes the form

ypred(x) = Ax2 +Bx+ C,

whereA,B andC are the parameters of themodel. (Since the prediction depends
on the parameters, it would be better to write ypred(x | A,B,C))

Nowwe have to choose the values of these parameters in order to get a curve that
best approximates the data points. But what do wemean by best approximation?
We formally define this using an objective function. This function measures either
how well your predictions fit the observed data, or how poorly (then it’s often
called a cost function). During the training phase you want to maximize or
minimize the objective funciton. In other words, we want to find the parameters
values that result in the best between predictions and observations, as measured
by the objective function.

In this example, we can define the objective function as the (mean absolute)
difference between observed values yi and the values ypred(xi) predicted by our
polynomial model. This would be a cost function which we want to minimize.
For the mathematically inclined, you could define it as follows:

C(observations,params) = 1

n

n∑
i=1

|yi − ypred(xi | A,B,C)|.

One thing to consider is that, depending on the data points, it is not always
possible to find the set of parameters that gives us an objective function with
minimum possible value (zero in this case).

QUESTION 1

For this polynomial model, what is the maximum number of observations
(xi, yi) for which can always find a set of parameters that make the objective
function be zero? (Assume all xi’s are distinct.) (1 point)

Hint 1: If you have a model with k parameters and you have n data points,
this gives you m equations with n variables (parameters). If n == k then
you will find exactly one valid value for each variable (parameter). Ifm < n
the equations would have more than 1 answer and if n > k there would be
no solution at all.

3

Hint 2: Consider a linear model, ypred(x) = Ax+ B, where there are two
parameters. If you have one point, you can have infinite number of lines
that go through the point. If you have two points, there is only one lines
that passes both of the points. Then if you add a third point, if it is not on
the same line as the first two points, you can not have a line that passes all
the three points.

2.2 Grid search

Now, if we have the model, the objective function, and the data points, how can
we find the best set of values for the parameters? The algorithms that are used
to find the best set of values for the parameters of a model are called optimization
algorithms. Here, we look at two different optimization algorithm: grid search
and hill climbing.

One way to find the optimal parameter setting is to compute the objective func-
tion for all possible equidistant combinations of different values for the parame-
ters, and then choose the combination that gives us the lowest cost (the output
of the cost function). This method is called grid search.

In the example model, set C to a random value, and assume A and B can be any
real value in the range [−1, 1]. We have to pick a step size, let’s say 0.1. (Since
there are indefinite possible values we pick a step size in order to pick a sample.)
Thus we would have 21 possible values for both A and B:

{−1,−.9,−.8, 0.7, ..., 0, .1, .2, ..., .9, 1}

If we take all possible combinations, we would have 21× 21 parameter settings.
This gives us the grid in the figure below.

Parameter search space for grid search in the example model

QUESTION 2

The example model just discussed is implemented in polynomial.py. You
can initialize it and generate training data as follows:

from polynomial import PolynomialModel, generate_training_data
model = PolynomialModel(A_init=2, B_init=3, C_init=.75)
data = generate_training_data(num_datapoints=30)

Look at the code and make sure you understand how it works and what
else you can do with it. The file optimization.py contains a function which
allows you to optimize the model using grid search:

cost_matrix, domains = grid_search(model, data, step_size=.05, optimize=['A', 'B'])

Read (the documentation in) the code to figure out how it works. Plot a
heatmap showing the cost function for different values of A and B. (1 point)

4

https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search

QUESTION 3

Write a function that takes a model and data as arguments, plots the data as
black dots and shows themodel curve as a solid red line on top of it. Give the
curve a labelwith themodel parameters (something like y = .25x2+.61x+1).
Use this function to plot the best model found with grid search. Did the
optimization algorithm find good parameters? If not, how can you change
the initialization or the optimization to get a better fit? (1 point)

2.3 Hill climbing

There are several methods that help us avoid exploring the whole space of the
parameter values, using greedy decisions to directly explore the space in the
direction that is more probably closer to the minimum point. One of those is
the hill climbing algorithm.

Hill climbing is a so called local search algorithm. The idea behind it is that
you start from a random point (where each point is a possible solution for the
problem), then you decide in which direction you should change the parameters
based on the value of the cost function at the current point and its neighbours.
Greedily, in each iteration, you choose the next point to bewhere the cost function
is the lowest.

There exist different versions of this algorithm. Here, we will implement simple
hill climbing. Informally, you can think about simple hill climbing as if you were
lost in some huge hilly landscape and your goal is to find the highest point. If
you follow this algorithm, you would make a step from where you are, in one
random direction, and see if you have moved higher. If so, you choose your next
random direction from this point; if, instead, the landscape goes down, then
you go back where you were and choose another random direction.

QUESTION 4

The file optimization.py contains an implementation of the simple hill
climbing algorithm that you can use with the polynomial model, just like
the grid search algorithm. Carefully look at the code and figure out how
it works. Train the polynomial model using hill climbing. Plot the cost
after every parameter update, and make a plot showing the model fit after
training. (1 point)

QUESTION 5

If you would run the hill climbing algorithm multiple times, chances are
the algorithm converges to different parameter settings every time. This
is due to the randomness in the initial condition and in choosing the next
step.

1. Write a function that trains a model 100 times on a given dataset, and

5

https://en.wikipedia.org/wiki/Hill_climbing

returns (1) the parameter values found in every run, and (2) the final
cost. (0.5 points)

2. Next, write a function that plots the distribution of values every vari-
able takes over the 500 runs. This shows you which local minima
different runs tend to end up in. You can use matplotlib to draw sim-
ple histograms, but you might also want to look at the python library
seaborn which allows you to easily make violin plots, stripplots and
much more. (0.5 points)

3. Plot the parameter distributions for (at least) two different datasets:
one with 5 datapoints, and one with 500 datapoints. Can you explain
what you see? (1 point)

3 The RnR model

Now that you know how you can fit a model using grid search and hill climbing,
we return to the Retention&Recognition model. An implementation of the RnR
model is provided, and your task is to fit the parameters of this model (train the
model) on the dataset that is provided.

3.1 The data

The datasetwe use comes fromFrank et al. (2010). The authors three experiments
to study how different factors affect word segmentation. These factors are:

• Experiment 1: sentence length
In this experiment the number of tokens (100) and the size of the vocabulary
(6) are fixed. The sentence length is set to be 1, 2, 3, 4, 6, 8, 12 or 24.

• Experiment 2: number of tokens
In this experiment the size of the vocabulary (6) and sentence length (4)
are fixed. The total number of tokens in the input stream is set to be 48,
100, 300, 600, 900 or 1200.

• Experiment 3: size of the vocabulary
In this experiment the number of tokens (600 / vocabulary_size) and the
length of the sentence (4) are fixed. The vocabulary size is set to be 3, 4, 5,
6 or 9.

In each experiment the input stream is generated pseudo-randomly to satisfy the
specified criteria. After being exposed to this stream, the participants answer a 2-
alternative forced choice test in which they choose between words and partwords.
These responses are collected in three data files in the materials/data directory.
The file experiment.py contains a Python class that can load all the human
responses:

from experiment import Experiment
You can set experiment_id to 1, 2, or 3

6

https://pythonspot.com/matplotlib-histogram/
https://seaborn.pydata.org
https://seaborn.pydata.org/examples/simple_violinplots.html
https://seaborn.pydata.org/generated/seaborn.stripplot.html?highlight=stripplot#seaborn.stripplot

experiment = Experiment(experiment_id=1, data_dir='../data/')
results = experiment.results

If you run into problems when trying to import experiment.py from outside the
materials/src directory, first add the directory to your path:

import sys
sys.path.append('../relative/path/to/materials/src')

If all that worked, the object results has now loaded and processed human
responses. It has some useful properties:

• results.data is a list of tuples containing the condition, subject, and if
he/she was correct or not

• results.performance is performance of each subject for each condition.
You can also plot the performance of participants in the experiment using
experiment.plotPerformance().

• results.avg_performance is average performance of all subjects for each
condition

• results.std_performance is standard deviation of performance of all sub-
jects on each condition

Every experiment has several conditions, which are stored in experiment.conditions.
You can also find the stimuli (and the concatenated stream) there. For example:

experiment = Experiment(experiment_id=1, data_dir='../data/')
condition = experiment.conditions[1]
print(condition.stimuli)
print(condition.stream)

EXERCISE 1

Plot the performance of participants in experiment 2. Also print the stream
of experiment 3 with vocabulary size 9.

3.2 The model

As explained in the introduction, the RnR model is a probabilistic segmentation
model with four free parameters: A,B,C, and D. The file models.py contains
(a light wrapper around) an implementation of the RnR model. The following
snippet shows how you can instantiate the RnR model and see the words it
memorizes:

from models import RnRModel
model = RnRModel(A=0.04, B=0.3, C=0.3, D=0.3, nmax=4)

for condition in experiment.conditions.values():
Memorized words per length
stream = condition.stream
subjective_frequencies = model.memorizeOnline(stream)

7

Extract the words only
words = list(flatten([f.keys() for f in subjective_frequencies.values()]))
print(condition, '\n', words, '\n')

In order to test the performance of the model, after each input stream, a list of
pairs of sequences consisting of one word and one partword will be given to the
model, and it has to decide which of the sequences is more likely to be a word.
These test pairs are stored in condition.test. The output of the RnR model
consists of a memory of segments, together with their subjective frequencies.
In order to convert that output to the probabilities of choosing a test item, we
use the Luce rule, which states that, given two alternative options s1 and s2 to
choose from (sequences in our case), the probability to choose one over the other
is:

P (s1) =
score(s1)

score(s1) + score(s2)

where score is, in the case of the RnR model, a subjective frequency. In the code,
we call the Luce choice rule as follows:

prob_1, prob_2, chosen = model.luce(word_1, word_2)

3.3 Training

Note. There are some problems with the remainder of this lab.

Now that you know what does it mean to fit a model to some data, you are
ready to train the RnR model. In the RnR model, there are 4 parameters to be
tuned (A,B,C,D), and they all should be in the range of (0, 1). The goal is to
set these parameters in a way that this model behaves as similar as possible to
humans in doing the segmentation task. The objective function is Pearson’s r,
which computes the correlation between the performances of the model and the
average performances of humans for different conditions.

QUESTION 6

Apply grid search to fit the parameters of the RnR model for each of the
experiments separately. Choose step size of 0.01 (if this is too slow for your
computer, choose a larger step size, such as 0.1, and report it). What is the
best correlation that you get? (1 point)

QUESTION 7

Apply hill climbing to fit the parameters of the RnR model for each of the
experiments separately. What is the best correlation that you get? Do you
get similar results as with grid search? Why? Draw a plot to show how the
cost changes after each iteration.

8

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

3.4 Evaluating

QUESTION 8

For each of the three fitted models that you got from the hill climbing search
algorithm, draw a plot that compares the performance of humans with the
performance of the model. What can you conclude? (1 point)

QUESTION 9

In this assignment, we have fitted the three datasets independently, so we
end up with three different models. What would be a better practice? Can
you think of a training setup in which we can make sure that the parameters
generalize (i.e. do not overfit the data)? You do not need to write any code, just
reason about this

References

Alhama, Raquel G, Remko Scha, and Willem Zuidema. 2015. “How Should
We Evaluate Models of Segmentation in Artificial Language Learning?” In
Proceedings of 13th International Conference on Cognitive Modeling.

Alhama, Raquel G, and Willem Zuidema. 2017. “Segmentation as Retention
and Recognition: The R&RModel.” In The 39th Annual Conference of the Cognitive
Science Society (Cogsci 2017), 1531–6. Cognitive Science Society.

Frank, Michael C, Sharon Goldwater, Thomas L Griffiths, and Joshua B Tenen-
baum. 2010. “Modeling Human Performance in Statistical Word Segmentation.”
Cognition 117 (2): 107–25.

9

	Introduction
	Model fitting
	An example model: a polynomial
	Grid search
	Hill climbing

	The RnR model
	The data
	The model
	Training
	Evaluating

	References

